有關高中數(shù)學說課稿匯總6篇
作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫說課稿,通過說課稿可以很好地改正講課缺點。那么應當如何寫說課稿呢?以下是小編幫大家整理的高中數(shù)學說課稿6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學說課稿 篇1
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修1第二章第二節(jié)《對數(shù)函數(shù)》。
我嘗試利用新課標的理念來指導教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數(shù)的第一階段學習(初中)的基礎上,進行第二階段的函數(shù)學習。而對數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學生已經(jīng)學習了指數(shù)函數(shù)及對數(shù)的內(nèi)容,這為過渡到本節(jié)的學習起著鋪墊作用!皩(shù)函數(shù)”這節(jié)教材,是在沒有學習反函數(shù)的基礎上研究的指數(shù)函數(shù)和對數(shù)函數(shù)的自變量和因變量之間的關系。同時對數(shù)函數(shù)作為常用數(shù)學模型在解決社會生活中的實例有著廣泛的應用,本節(jié)課的學習為學生進一步學習,參加生產(chǎn)和實際生活提供必要的基礎知識。
二、目標分析
。ㄒ唬⒔虒W目標
根據(jù)《對數(shù)函數(shù)》在教材內(nèi)容中的地位與作用,結(jié)合學情分析,本節(jié)課教學應實現(xiàn)如下的教學目標:
1、知識與技能
。1)、進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型;
。2)、理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖像和性質(zhì);
(3)、由實際問題出發(fā),培養(yǎng)學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數(shù)函數(shù)的概念;體驗結(jié)合舊知識探索新知識,研究新問題的快樂。
3、情感態(tài)度與價值觀
通過對對數(shù)函數(shù)函數(shù)圖像和性質(zhì)的探究過程,培養(yǎng)學生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。在民主、和諧的教學氣氛中,促進師生的情感交流。
(二)教學重點、難點及關鍵
1、重點:對數(shù)函數(shù)的概念、圖像和性質(zhì);在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯(lián)系舊知識,學習新知識。
2、 難點:底數(shù)a對對數(shù)函數(shù)的圖像和性質(zhì)的影響。
[關鍵]對數(shù)函數(shù)與指數(shù)函數(shù)的類比教學。
由指數(shù)函數(shù)的圖像過渡到對數(shù)函數(shù)的圖像,通過類比分析達到深刻地了解對數(shù)函數(shù)的圖像及其性質(zhì)是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數(shù)形結(jié)合,加強直觀教學,使學生能形成以圖像為根本,以性質(zhì)為主體的知識網(wǎng)絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
1、啟發(fā)引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數(shù)函數(shù)性質(zhì)對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學知識更牢固,理解更深刻。
(二)、學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照;
2、探究式學習法:學生通過分析、探索,得出對數(shù)函數(shù)的定義;
3、自主性學習法:通過實驗畫出函數(shù)圖像、觀察圖像自得其性質(zhì);
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。
四、教學過程分析
(一)、教學過程設計
1、創(chuàng)設情境,提出問題。
在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù)y=2x,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關系式。
問題一:這是一個怎樣的函數(shù)模型類型呢?
設計意圖
復習指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細胞的個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題?
設計意圖
為了引出對數(shù)函數(shù)
問題三:在關系式x=log2y每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設計意圖
。1)、為了讓學生更好地理解函數(shù);
(2)、為了讓學生更好地理解對數(shù)函數(shù)的概念。
2、引導探究,建構概念。
。1)、對數(shù)函數(shù)的概念:
同樣,在前面提到的發(fā)射性物質(zhì),經(jīng)過的時間x年與物質(zhì)剩余量y的關系式為y=0.84x,我們也可以把它改成對數(shù)式x=log0.84y,其中x年夜可以看作物質(zhì)剩余量y的函數(shù),可見這樣的問題在現(xiàn)實生活中還是不少的。
設計意圖
前面的問題情景的底數(shù)為2,而這個問題情景的底數(shù)是0.84,我認為這個情景并不是多余的,其實它暗示了對數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但是在習慣上,我們用x表示自變量,用y表示函數(shù)值。
問題一:你能把以上兩個函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?
設計意圖
體現(xiàn)出了由特殊到一般的數(shù)學思想
問題三:在y=logax中,a有什么限制條件嗎?請結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
問題五:x=logay與y=ax中的x,y的相同之處是什么?不同之處是什么?
設計意圖
前四個問題是為了引導出對數(shù)函數(shù)的概念,然而,光有前四個問題還是不夠的,學生最容易忽略或最不容易理解的是函數(shù)的'定義域,所以設計這個問題是為了讓學生更好地理解對數(shù)函數(shù)的定義域。
。2)、對數(shù)函數(shù)的圖像與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學習什么內(nèi)容了?
設計意圖
提示學生進行類比學習
合作探究1:借助計算器在同一直角坐標系中畫出下列兩組函數(shù)的圖像,并觀察各族函數(shù)圖像,探求他們之間的關系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:當a>0,a≠ 1,函數(shù)y=ax與y=logax圖像之間有什么關系?
設計意圖
在這兒體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
合作探究3:分析你所畫的兩組函數(shù)的圖像,對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì)。
設計意圖
學生討論并交流各自的而發(fā)現(xiàn)成果,教師結(jié)合學生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))。問題1:對數(shù)函數(shù)y=logax( a>0,a≠1,)是否具有奇偶性,為什么?
問題2:對數(shù)函數(shù)y=logax( a>0,a≠1,),當a>1時,x取何值,y>0,x取何值,y<0,當0 問題3:對數(shù)式logab的值的符號與a,b的取值之間有何關系? 知識拓展:函數(shù)y=ax稱為y=logax的反函數(shù),反之,也成立,一般地,如果函數(shù)y=f(x)存在反函數(shù),那么它的反函數(shù)記作y=f-1(x)。 3、自我嘗試,初步應用。 例1:求下列函數(shù)的定義域 y=log0.2(4-x)(該題主要考查對函數(shù)y=logax的定義域(0,+∞)這一限制條件,根據(jù)函數(shù)的解析式求得不等式,解對應的不等式。) 例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大。 。1)、㏒2 3.4,log2 3.8; 。2)、log0.5 1.8,log0.5 2.1; 。3)、log7 5,log6 7 。ㄔ谶@兒要求學生通過回顧指數(shù)函數(shù)的有關性質(zhì)比較大小的步驟和方法,完成完成前兩題,最后一題可以通過教師的適當點撥完成解答,最后進行歸納總結(jié)比較數(shù)的大小常用的方法) 合作探究4:已知logm 4 設計意圖 該題不僅運用了對數(shù)函數(shù)的圖像和性質(zhì),還培養(yǎng)了學生數(shù)形結(jié)合、分類討論等數(shù)學思想。 4、當堂訓練,鞏固深化。 通過學生的主體性參與,使學生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。 采用課后習題1,2,3. 5、小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。 。1)、小結(jié): 、賹(shù)函數(shù)的概念 、趯(shù)函數(shù)的圖像和性質(zhì) 、劾脤(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟, (2)、反思 我設計了三個問題 、佟⑼ㄟ^本節(jié)課的學習,你學到了哪些知識? 、、通過本節(jié)課的學習,你最大的體驗是什么? 、、通過本節(jié)課的學習,你掌握了哪些技能? 。ǘ、作業(yè)設計 作業(yè)分為必做題和選做題,必做題是對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學以致用。通過作業(yè)設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生的自主發(fā)展、合作探究的學習氛圍的形成。 我設計了以下作業(yè): 必做題:課后習題A 1,2,3; 選做題:課后習題B 1,2,3; (三)、板書設計 板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。 五、評價分析 學生學習的結(jié)果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結(jié)合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對本節(jié)是否有一個完整的集訓,并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設計,敬請各位專家、評委批評指正。 謝謝! 一.說教材 1.1 教材結(jié)構與內(nèi)容簡析 本節(jié)課為《江蘇省中等職業(yè)學校試用教材數(shù)學(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。 函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊涵著重要的數(shù)學思想方法,如化歸思想、映射與對應思想、換元方法等。 1.2 教學目標 1.2.1知識目標 、拧⒔o定平移前后函數(shù)解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關系。 、、能較熟練地化簡較復雜的函數(shù)解析式,找出對應的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。 、、初步學會應用平移變換規(guī)律研究較復雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。 1.2.2能力目標 、、在數(shù)學實驗平臺上,能自主探究,改變相應參數(shù)和函數(shù)解析式,觀察相應圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。 、、結(jié)合學習中發(fā)現(xiàn)的問題,學會借助于數(shù)學軟件等工具研究、探索和解決問題,學會數(shù)學 地解決問題。 ⑶、滲透數(shù)學思想與方法(如化歸、映射的思想,換元的方法)的學習,發(fā)展學生的非邏輯思維能力(合情推理、直覺等)。 1.2.3情感目標 培養(yǎng)學生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學生感受數(shù)學學習的意義,改善學生的數(shù)學學習信念(態(tài)度、興趣等)。 1.3 教材重點和難點處理思路 重點:函數(shù)圖象的平移變換規(guī)律及應用 難點:經(jīng)歷數(shù)學實驗方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復雜函數(shù) 教材在這段內(nèi)容的處理上,注重直觀性背景,注重學生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結(jié)果即平移公式。實際教學中,我們發(fā)現(xiàn)如果學生不經(jīng)受足夠的親身體驗而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然! 為了突出重點、突破難點,在教學中采取了以下策略: 、拧膶W生已有知識出發(fā),精心設計一些適合學生學力的數(shù)學實驗平臺,分層次逐步引導學生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設情境,引發(fā)學生認知沖突,激發(fā)學生求知欲,能借助于數(shù)學軟件多角度積極探求錯誤原因,使學生認識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認識解析式形式化的特點。 ⑶、數(shù)學實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學生的自主探究、合作交流,從而實現(xiàn)對平移變換規(guī)律知識的建構。 二.說教法 針對職高一年級學生的認知特點和心理特征,在遵循啟發(fā)式教學原則的基礎上,本節(jié)課我主要采取以實驗發(fā)現(xiàn)法為主,以討論法、練習法為輔的教學方法,引導學生通過實驗手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學知識建構過程,體驗數(shù)學發(fā)現(xiàn)的喜悅。 本節(jié)課的設計一方面重視學生數(shù)學學習過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學規(guī)則去操作數(shù)學,而是采取數(shù)學實驗的方式,使學生有機會經(jīng)受足夠的親身體驗,親歷知識的自主建構過程;使學生學會從具體情境中提取適當?shù)母拍,從觀察到的實例中進行概括,進行合理的數(shù)學猜想與數(shù)學驗證,并作更高層次的數(shù)學概括與抽象;從而學會數(shù)學地思考。 另一方面,注重創(chuàng)設機會使學生有機會看到數(shù)學的全貌,體會數(shù)學的全過程。整堂課的設計圍繞研究較復雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學生清楚研究函數(shù)圖象平移的必要性,明確學習目標,又讓學生初步學會如何應用規(guī)律解決問題,體會知識的價值,增強求知欲。 總之,本節(jié)課采用數(shù)學實驗發(fā)現(xiàn)教學,學生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關信息。 三.說學法 “學之道在于悟,教之道在于度!睂W生是學習的主體,教師在教學過程中須將學習的主動權交給學生。 美國某大學有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領會了;讓我做過的,我就理解了!蓖ㄟ^學生的自主實驗,在探索新知的經(jīng)歷和獲得新知的.體驗的基礎之上,真正正確掌握平移方向。 教師的“教”不僅要讓學生“學會知識”,更主要的是要讓學生“會學知識”。正如荷蘭數(shù)學教育家弗賴登塔爾所指出,“數(shù)學知識既不是教出來的,也不是學出來的,而是研究出來的!北竟(jié)課的教學中創(chuàng)設利于學生發(fā)現(xiàn)數(shù)學的實驗情境,讓學生自主地“做數(shù)學”,將傳統(tǒng)意義下的“學習”數(shù)學改變?yōu)椤把芯俊睌?shù)學。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學習方式的同時學會數(shù)學地思考。 四.說程序 4.1創(chuàng)設情境,引入課題 在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?” 引導學生討論后,總結(jié)出兩種思路,即:思路1、通過描點法作出函數(shù)的圖象,借助于圖象研究相關性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。 從而自然地引出課題,關鍵是找出 與 的關系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。 4.2數(shù)學實驗,自主探索 這一環(huán)節(jié)主要分兩階段。 1、嘗試初探 引例、函數(shù) 與 圖象間的關系 這一階段主要由教師講解,學生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。 講解時,利用幾何畫板的度量功能,給出兩個對應點的坐標,易于學生發(fā)現(xiàn)點的坐標關系,并給出相應的輔助線,一方面便于學生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學習作好鋪墊。 2、實驗發(fā)現(xiàn) 本階段由學生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規(guī)律的任務。 實驗1、試改變實驗平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。 函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實驗結(jié)論 【教材分析】 1、本節(jié)教材的地位與作用 本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結(jié)構,培養(yǎng)學生用數(shù)學的意識都具有極為重要的'意義。 2、教學重點 會求閉區(qū)間上連續(xù)開區(qū)間上可導的函數(shù)的最值。 3、教學難點 高三年級學生雖然已經(jīng)具有一定的知識基礎,但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。 4、教學關鍵 本節(jié)課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點。 【教學目標】 根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結(jié)合學生已有的認知水平,制定本節(jié)如下的教學目標: 1、知識和技能目標 。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。 。2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。 。3)掌握用導數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。 2、過程和方法目標 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。 。3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導的函數(shù)的最大、最小值。 3、情感和價值目標 。1)認識事物之間的的區(qū)別和聯(lián)系。 。2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。 。3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。 【教法選擇】 根據(jù)皮亞杰的建構主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構的結(jié)果,而認識則是起源于主客體之間的相互作用。 本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導學生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑,而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。 【學法指導】 對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數(shù)的求最值問題?教學設計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。 【教學過程】 本節(jié)課的教學,大致按照“創(chuàng)設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創(chuàng)新——歸納小結(jié),反饋回授”四個環(huán)節(jié)進行組織。 1、教學目標: 一、借助單位圓理解任意角的三角函數(shù)的定義。 二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。 三、通過學生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學概念的嚴謹性與科學性。 四、讓學生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。 2、教學重點與難點: 重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。 難點:任意角的三角函數(shù)概念的建構過程。 授課過程: 一、引入 在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復、周而復始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學的方法來刻畫這種變化?從這節(jié)課開始,我們要來學習刻畫這種規(guī)律的數(shù)學模型之一――三角函數(shù)。 二、創(chuàng)設情境 三角函數(shù)是與角有關的函數(shù),在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢? 學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。 問題: 1、銳角三角函數(shù)能否表示成第二種比值方式? 2、點P能否取在終邊上的其它位置?為什么? 3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。 練習:計算的各三角函數(shù)值。 三、任意角的三角函數(shù)的定義 角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢? 嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎? 評價學生給出的定義。給出任意角三角函數(shù)的.定義。 四、解析任意角三角函數(shù)的定義 三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域) 對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應的關系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。 五、三角函數(shù)的應用。 1、已知角,求a的三角函數(shù)值。 2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。 以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題: 1、已知角如何求三角函數(shù)值? 2、利用角a的終邊上任意一點的坐標也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?) 3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。 4、探究:三角函數(shù)的值在各象限的符號。 六、小結(jié)及作業(yè) 教案設計說明: 新教材的教學理念之一是讓學生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設計。 首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學生體會到新知識的發(fā)生是可能的,自然的。 其次,到底應該怎樣去合理定義任意角的三角函數(shù)呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹?shù),科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數(shù)學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數(shù)概念的理解。 再次,讓學生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標系下點的坐標這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。 一、說教材 1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學生歸納出反比例函數(shù)的概念,并進一步體會函數(shù)是刻畫變量之間關系的數(shù)學模型,從中體會函數(shù)的模型思想。因此本節(jié)課重點是理解和領悟反比例函數(shù)的概念,所滲透的數(shù)學思想方法有:類比,轉(zhuǎn)化,建模。 2.學情分析:對八年級學生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數(shù)時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點是理解和領悟反比例函數(shù)的概念。 二、說教學目標 根據(jù)本人對《數(shù)學課程標準》的理解與分析,考慮學生已有的認知結(jié)構、心理特征,我把本課的目標定為: 1.從現(xiàn)實的情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相依關系,加深對函數(shù)概念的理解。 2.經(jīng)歷抽象反比例函數(shù)概念的.過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念。 三、說教法 本節(jié)課從知識結(jié)構呈現(xiàn)的角度看,為了實現(xiàn)教學目標,我建立了“創(chuàng)設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現(xiàn)了知識的生成與發(fā)展的過程,也符合學生的認知規(guī)律。于是,從教學內(nèi)容的性質(zhì)出發(fā),我設計了如下的課堂結(jié)構:創(chuàng)設出電流、行程等情境問題讓學生發(fā)現(xiàn)新知,把上述問題進行類比,導出概念,獲得新知,最后總結(jié)評價、內(nèi)化新知。 四、說學法 我認為學生將實際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數(shù)概念的教學,也考慮到概念教學要從大量實際出發(fā),通過事例幫助完成定義。 好學教育: 因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。 各位老師你們好!今天我要為大家講的課題是 首先,我對本節(jié)教材進行一些分析: 一、教材分析(說教材): 1. 教材所處的地位和作用: 本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內(nèi)容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。 2. 教育教學目標: 根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構心理特征,制定如下教學目標: 。1)知識目標: (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。 3. 重點,難點以及確定依據(jù): 本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點 重點: 通過 突出重點 難點: 通過 突破難點 關鍵: 下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談: 二、教學策略(說教法) 1. 教學手段: 如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點: 應著重采用 的教學方法。 2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。 3. 學情分析:(說學法) 我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。 。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學 生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散 。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。 (3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的'最有力的動力 最后我來具體談談這一堂課的教學過程: 4. 教學程序及設想: 。1)由 引入:把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。 。2)由實例得出本課新的知識點 。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。 。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。 。5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。 。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。 (7)板書 。8)布置作業(yè)。 針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高, 教學程序: 課堂結(jié)構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分 【高中數(shù)學說課稿】相關文章: 高中數(shù)學的說課稿04-19 高中數(shù)學說課稿06-12 高中數(shù)學數(shù)列說課稿06-07 高中數(shù)學優(yōu)秀說課稿03-08 高中數(shù)學說課稿06-13 高中數(shù)學全套說課稿06-08 高中數(shù)學說課稿(熱門)01-16 高中數(shù)學說課稿(集合)06-17高中數(shù)學說課稿 篇2
高中數(shù)學說課稿 篇3
高中數(shù)學說課稿 篇4
高中數(shù)學說課稿 篇5
高中數(shù)學說課稿 篇6