初中數(shù)學(xué)教案人教版
作為一名教師,就有可能用到教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?下面是小編為大家收集的初中數(shù)學(xué)教案人教版,歡迎閱讀與收藏。

教學(xué)目標
1、理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進行運算;
2、了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);
3、通過將除法運算轉(zhuǎn)化為乘法運算,培養(yǎng)學(xué)生的轉(zhuǎn)化的思想;通過運算,培養(yǎng)學(xué)生的運算能力。
教學(xué)建議
(一)重點、難點分析
本節(jié)教學(xué)的重點是熟練進行運算,教學(xué)難點是理解法則。
1、有理數(shù)除法有兩種法則。法則1:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。是把除法轉(zhuǎn)化為乘法來解決問題。法則2是把有理數(shù)除法納入有理數(shù)運算的統(tǒng)一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。
2、對于除法的兩個法則,在計算時可根據(jù)具體的情況選用,一般在不能整除的情況下應(yīng)用第一法則。如;在有整除的情況下,應(yīng)用第二個法則比較方便,如;在能整除的情況下,應(yīng)用第二個法則比較方便,如,如寫成就麻煩了。
。ǘ┲R結(jié)構(gòu)
(三)教法建議
1、學(xué)生實際運算時,老師要強調(diào)先確定商的符號,然后在根據(jù)不同情況采取適當?shù)姆椒ㄇ笊痰慕^對值,求商的絕對值時,可以直接除,也可以乘以除數(shù)的倒數(shù)。
2、關(guān)于0不能做除數(shù)的問題,讓學(xué)生結(jié)合小學(xué)的知識接受這一認識就可以了,不必具體講述0為什么不能做除數(shù)的理由。
3、理解倒數(shù)的概念
。1)根據(jù)定義乘積為1的兩個數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,—2與互為倒數(shù)。
。2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計算,—2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實際應(yīng)用時我們常把已知數(shù)看作分數(shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的倒數(shù)。如—2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。
(3)倒數(shù)與相反數(shù)這兩個概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個數(shù),而相反數(shù)是指和為0的兩個數(shù)。如:,2與互為倒數(shù),2與—2互為相反數(shù)。其次互為倒數(shù)的兩個數(shù)符號相同,而互為相反數(shù)符號相反。如:—2的倒數(shù)是,—2的相反數(shù)是+2;另外0沒有倒數(shù),而0的相反數(shù)是0。
4、關(guān)于倒數(shù)的求法要注意:
(1)求分數(shù)的倒數(shù),只要把這個分數(shù)的分子、分母顛倒位置即可。
(2)正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)仍是負數(shù)。
。3)負倒數(shù)的定義:乘積是—1的兩個數(shù)互為負倒數(shù)。
教學(xué)設(shè)計示例
一、素質(zhì)教育目標
(一)知識教學(xué)點
1、了解有理數(shù)除法的定義。
2、理解倒數(shù)的意義。
3、掌握有理數(shù)除法法則,會進行運算。
。ǘ┠芰τ(xùn)練點
1、通過有理數(shù)除法法則的導(dǎo)出及運算,讓學(xué)生體會轉(zhuǎn)化思想。
2、培養(yǎng)學(xué)生運用數(shù)學(xué)思想指導(dǎo)思維活動的能力。
(三)德育滲透點
通過學(xué)習(xí)有理數(shù)除法運算、感知數(shù)學(xué)知識具有普遍聯(lián)系性、相互轉(zhuǎn)化性。
(四)美育滲透點
把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美。
二、學(xué)法引導(dǎo)
1、教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問題情境,精心構(gòu)思啟發(fā)導(dǎo)語并及時點撥,使學(xué)生主動發(fā)展思維和能力。
2、學(xué)生學(xué)法:通過練習(xí)探索新知→歸納除法法則→鞏固練習(xí)
三、重點、難點、疑點及解決辦法
1、重點:除法法則的靈活運用和倒數(shù)的概念。
2、難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當?shù)姆椒ㄇ笊痰慕^對值。
3、疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解。
四、課時安排 1課時
五、教具學(xué)具準備
投影儀、自制膠片、彩粉筆。
六、師生互動活動設(shè)計
教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成。
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí),板書課題。
【教法說明】同小學(xué)算術(shù)中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學(xué)好求一個有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí)。
(二)探索新知,講授新課
1、倒數(shù)。 (出示投影1)
4×()=1;×()=1;0.5×()=1; 0×()=1;—4×()=1;×()=1。
學(xué)生活動:口答以上題目。
【教法說明】在有理數(shù)乘法的基礎(chǔ)上,學(xué)生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負數(shù),又有整數(shù)、分數(shù),在數(shù)的變化中,讓學(xué)生回憶、體會出求各種數(shù)的倒數(shù)的方法。
師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關(guān)系?
學(xué)生活動:乘積是1的兩個數(shù)互為倒數(shù)。(板書)
師問:0有倒數(shù)嗎?為什么?
學(xué)生活動:通過題目0×()=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù)。
師:引入負數(shù)后,乘積是1的兩個負數(shù)也互為倒數(shù),如—4與,與互為倒數(shù),即的倒數(shù)是。
提出問題:根據(jù)以上題目,怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù)?
【教法說明】教師注意創(chuàng)設(shè)問題情境,讓學(xué)生參與思考,循序漸進地引出,對于有理數(shù)也有倒數(shù)是。對于怎樣求整數(shù)、分數(shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個問題是讓學(xué)生帶著問題來做下組練習(xí)。(出示投影2)
求下列各數(shù)的倒數(shù): (1);(2);(3); (4);(5)—5;(6)1。
學(xué)生活動:通過思考口答這6小題,討論后得出,求整數(shù)的倒數(shù)是用1除以它,求分數(shù)的倒數(shù)是分子分母顛倒位置;求小數(shù)的倒數(shù)必須先化成分數(shù)再求。
2、
計算:8÷(—4)。 計算:8×()=?(—2) ∴8÷(—4)=8×()。
再嘗試:—16÷(—2)=?—16×()=?
師:根據(jù)以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?
學(xué)生活動:同桌互相討論。(一個學(xué)生回答)
師強調(diào)后板書: [板書]
【教法說明】通過學(xué)生親自演算和教師的引導(dǎo),對有理數(shù)除法法則及字母表示有了非常清楚的認識,教師放手讓學(xué)生總結(jié)法則,尤其是字母表示,訓(xùn)練學(xué)生的歸納及口頭表達能力。
。ㄈ﹪L試反饋,鞏固練習(xí)
師在黑板上出示例題。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案10-26
【精華】初中數(shù)學(xué)教案09-09
人教版初中數(shù)學(xué)教案10-15
【薦】初中數(shù)學(xué)教案01-13
人教版初中數(shù)學(xué)教案(精選31篇)03-17
數(shù)學(xué)教案11-09